Collective Dynamics of Self-propelled Semiflexible Filaments
نویسندگان
چکیده
The collective behavior of active semiflexible filaments is studied with a model of tangentially driven self-propelled worm-like chains. The combination of excluded-volume interactions and selfpropulsion leads to several distinct dynamic phases as a function of bending rigidity, activity, and aspect ratio of individual filaments. We consider first the case of intermediate filament density. For high-aspect-ratio filaments, we identify a transition with increasing propulsion from a state of free-swimming filaments to a state of spiraled filaments with nearly frozen translational motion. For lower aspect ratios, this gas-of-spirals phase is suppressed with growing density due to filament collisions; instead, filaments form clusters similar to self-propelled rods, as activity increases. Finite bending rigidity strongly effects the dynamics and phase behavior. Flexible filaments form small and transient clusters, while stiffer filaments organize into giant clusters, similarly as self-propelled rods, but with a reentrant phase behavior from giant to smaller clusters as activity becomes large enough to bend the filaments. For high filament densities, we identify a nearly frozen jamming state at low activities, a nematic laning state at intermediate activities, and an active-turbulence state at high activities. The latter state is characterized by a power-law decay of the energy spectrum as a function of wave number. The resulting phase diagrams encapsulate tunable non-equilibrium steady states that can be used in the organization of living matter.
منابع مشابه
Collective behavior of penetrable self-propelled rods in two dimensions.
Collective behavior of self-propelled particles is observed on a microscale for swimmers such as sperm and bacteria as well as for protein filaments in motility assays. The properties of such systems depend both on their dimensionality and the interactions between their particles. We introduce a model for self-propelled rods in two dimensions that interact via a separation-shifted Lennard-Jones...
متن کاملNonequilibrium glassy dynamics of self-propelled hard disks.
We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from ...
متن کاملSelf-propelled hard disks: implicit alignment and transition to collective motion
We formulate a model of self-propelled hard disks whose dynamics is governed by mutually coupled vectors for velocity and body orientation. Numerical integration at low densities reveals that the expected transition from isotropic to aligned collective motion is present. However, the transition at the Landau meanfield level is strongly first-order, while it is continuous in the Vicsek model. We...
متن کاملDepletion force induced collective motion of microtubules driven by kinesin.
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal fila...
متن کاملSelf-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics.
Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the...
متن کامل